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Genome sequencing studies have revealed a complex, het-
erogeneous mix of cancer-associated mutations, including 
both known and druggable oncogenic mutations (for exam-

ple, BRAF-V600E), and a large collection of variants of uncertain 
significance (VUS). Understanding the impact of specific onco-
genic mutations requires functional analysis. Even subtle changes 
in cancer-associated single nucleotide variants (SNVs) can have 
important functional consequences in tumorigenesis and drug sen-
sitivity1–6. Thus, while DNA sequencing has enormous potential to 
support clinical decision making, it is limited by a lack of under-
standing of how specific variants contribute to disease.

Base editing (BE) can introduce SNVs with high specificity and 
in the absence of DNA double-strand breaks (DSBs) or exogenous 
DNA templates7. We and others have developed BE tools that enable 
efficient BE in cell lines, primary cells and in vivo8–10. However, 
unlike Cas9-mediated DNA targeting of DSBs, predicting the effi-
ciency and precision of BE guides remains challenging.

To expand the capability and feasibility of studying VUS at 
scale, we set out to develop a framework for systematic engineer-
ing of thousands of cancer-associated genetic variants. To do this, 
we developed a modular ‘BE sensor’ platform that couples a sgRNA 

with its cognate genomic target in cis. Thus, in the presence of a 
base editor, sgRNAs drive editing of a physically linked surrogate, 
or ‘sensor’ target site. We find that sensor-based measurement of 
editing efficiency correlates closely with endogenous gene target-
ing and that sensor-validated sgRNAs can be used to streamline the 
engineering and characterization of cancer-associated SNVs in vivo. 
Further, integrated sensors support the interpretation of pooled BE 
library screens by providing a surrogate readout of sgRNA activity 
in parallel to sgRNA abundance or ‘screen fitness’.

To aid the development of future mutation-focused sen-
sor libraries, we developed a flexible computational pipeline 
(annotated mutation-informed nucleotide editing sgRNA search 
(AMINEsearch)) that generates BE sensor libraries from anno-
tated genomic data, and a web application (BE-SCAN) that simpli-
fies selection of effective BE tools for generating cancer-associated 
SNVs. We expect the resources described here will accelerate the 
functional interrogation of VUS.

Results
Development and validation of a BE sensor. To measure the activ-
ity of individual sgRNAs in a high-throughput manner, we designed 
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a BE sensor, in which a sgRNA is linked to its cognate target site 
in a lentiviral vector, allowing for high-throughput measurement 
of editing efficiency by PCR amplification and sequencing of the 
sensor cassette (Fig. 1a). To test whether BE sensors could measure 
qualitative and quantitative features of BE across different targets 
and editors, we generated a library containing ten human and eight 
mouse sgRNAs, in which sensor target sites were modified to con-
tain all 64 possible three-nucleotide protospacer adjacent motifs 
(PAMs) (ALL-PAM (AP) library; Fig. 1a and Supplementary Table 
1a). We next generated MDA-MB-231 cells that stably expressed one 
of nine base editors that span a range of PAM specificities, editing 
window sizes and overall editing efficiency. These include FNLS10, 
AncBE4max9, FNLS-2X (F2X)10, FNLS-HF1 (HF1)10,11, FNLS-HiFi 
(HiFi)12,13, FNLS-NG (NG)12,14, FNLS-HiFi-NG (HiFi-NG)12,14, 
FNLS-VQR (VQR)11 and xFNLS10,15 (Fig. 1a). We also generated 
Cas9 and Cas9-NG nuclease controls to assess the frequency of 
SNVs following DSBs. As expected, apart from Cas9 and Cas9-NG, 
each line showed efficient BE activity as measured by a fluores-
cent reporter12 (Fig. 1b). We next transduced each base editor- or 
Cas9-expressing-line with the AP library in duplicate at >2,000× 
representation and cultured cells for 1 week to allow BE. We ampli-
fied and sequenced entire sgRNA-scaffold-target cassettes from 
each cell population and quantified insertion or deletion (indel) 
frequency and target cytosine editing (Supplementary Table 1b). All 
lines showed high correlation of C > T editing efficiency between 
replicates (Supplementary Fig. 1), and, as expected, Cas9 and 
Cas9-NG showed indel formation but little-to-no target C > T edit-
ing (Fig. 1c, Supplementary Figs. 2 and 3). The sensor assay accu-
rately reported the relative efficiency and known PAM preferences 
of individual base editors (Fig. 1c). FNLS, AncBE4max, F2X, HF1, 
HiFi and xFNLS had maximum C > T editing at NGG PAMs and 
lower, but detectable, editing at NAG and NGA PAMs. Consistent 
with previous publications, VQR showed higher C > T editing at 
NGA PAMs11, while FNLS-NG and FNLS-HiFi-NG showed broad 
editing capabilities at NGN PAMs12,14 (Fig. 1c and Extended Data 
Fig. 1). In general, high-fidelity variants showed editing patterns 
identical to parental base editors, albeit with overall lower efficiency 
(Fig. 1d). Together, these data show that BE sensor libraries reliably 
report known features of well-characterized base editors.

AMINEsearch generates BE sensor libraries from genomics 
data. To establish a flexible pipeline to facilitate BE screens driven 
by clinical genomics data, we developed AMINEsearch (annotated 
mutation-informed nucleotide BE sgRNA search)—a BE sgRNA 
design algorithm that compiles ready-to-clone libraries of anno-
tated sgRNAs to model user-defined mutations (Fig. 2a). We first 
implemented AMINEsearch to generate sensor libraries to model 
cancer-associated mutations derived from targeted sequencing data 
(MSK-IMPACT)16, providing deep coverage of 462 cancer-relevant 
genes in >21,000 tumors at the time of library generation (Fig. 2b). 
BE is well suited to the creation of cancer-associated alterations, 
as such alterations are highly enriched for C to T to G to A transi-
tion mutations (Fig. 2c). Most BE-compatible SNVs were missense 
mutations, followed by nonsense and splice site alterations (Fig. 2d). 

We identified 2,608 SNVs as recurrent (at least four occurrences), 
with mutation frequency ranging from 0.02% to 5.1% (Fig. 2e).

By inputting the parameters of well-characterized, efficient Cas 
modules (SpCas9, Cas9-NG, xCas9 and ScCas9) and a BE target-
ing window of 4–11 bp, we identified 5,855 sgRNAs covering 1,450 
unique mutations. This human BE sensor (HBES) library repre-
sented ~56% of all recurrent mutations in the dataset (Supplementary 
Table 2c–d). While the MSK-IMPACT targeted sequencing assay is 
designed to focus specifically on known cancer-associated genes 
(Fig. 2f), cross-referencing with the OncoKB precision oncology 
knowledge base (https://sop.oncokb.org/)17,18 showed that the plu-
rality of SNVs targeted in HBES are VUS, with the most frequent 
subset of mutations being enriched in variant-level annotation  
(Fig. 2g and Extended Data Fig. 2).

To model cancer-associated mutations in the mouse genome, we 
included further steps in the AMINEsearch workflow to identify 
orthologous murine sites. For simplicity, unless otherwise stated, 
we refer to sgRNAs using the human mutation nomenclature. The 
mouse BE sensor (MBES) library contained 4,686 sgRNAs target-
ing 1,177 unique mutations (Supplementary Tables 2c–f). We noted 
modest attrition of BE sgRNAs when targeting the mouse genome 
due to lack of sequence conservation (Fig. 2d,f,h). The diversity of 
available BE tools allows for distinct tradeoffs. For instance, using 
base editors with an expanded editing window (F2X) or PAM 
flexibility (FNLS-NG) increases theoretical coverage (Fig. 2h) at 
the expected cost of reduced local specificity (Fig. 2i) or poten-
tially increased global offtarget effects (Extended Data Fig. 3 and 
Supplementary Table 3), respectively.

BE sensor identifies optimal sgRNAs for engineering variants. 
To measure editing efficiency of sgRNAs in the HBES and MBES 
libraries, we transduced each in duplicate into MDA-MB-231 cells 
expressing one of three base editors: FNLS10 (highest editing effi-
ciency), F2X10 (expanded editing range) or FNLS-NG12,14 (PAM flex-
ibility) (Fig. 3a and Supplementary Tables 4 and 5). Cas9-expressing 
cells served as a control to measure baseline C to T transitions in 
the absence of BE. Base editors were expressed to approximately 
equal amounts, while Cas9 showed higher protein abundance 
(Supplementary Fig. 4a). We observed excellent correlation of cyto-
sine editing between replicates from each library and base editor 
combination (Supplementary Fig. 5). As observed in AP screens, 
editing efficiency was influenced strongly by PAM, target cytosine 
position and dinucleotide sequence context (TC > AC = CC > GC) 
(Fig. 3a,b and Supplementary Fig. 6). Consistent with previ-
ous studies, FNLS and FNLS-NG showed maximum editing effi-
ciency at positions 3 to 9 of the protospacer, whereas F2X showed 
expanded editing at positions 3 to 13 (ref. 10) (Extended Data Fig. 4). 
While F2X had an extended editing range, its average efficiency in 
the canonical editing window (3–9 bp) was lower than that of FNLS 
(Supplementary Fig. 7). As expected, FNLS and F2X had maximum 
editing efficiency at NGG PAMs, whereas FNLS-NG showed broad 
activity at NGN PAMs (Fig. 3a). Cas9 showed no detectable BE 
activity, with ≤0.1% C > T editing across all base editor-PAM com-
binations (Fig. 3a,b and Supplementary Fig. 6).

Fig. 1 | A high-throughput sensor assay to characterize BE outcomes at thousands of target sites. a, Schematic of the sensor assay. A sgRNA is paired 
with its cognate target site in cis such that editing outcomes can be assessed quantitatively in a massively parallel fashion using NGS. Here, we illustrate the 
design of an APS library that queries 18 target sites with all 64 possible PAM combinations upon lentiviral integration into cells expressing a range of base 
editors and cultured for 7 days followed by gDNA isolation and screen deconvolution via NGS. b, Schematic of the GO BE reporter (top) used to confirm the 
activity of each of the nine base editors used in APS screens by measuring C > T-dependent induction of GFP expression in mScarlet-infected cells (bottom). 
c, C > T editing efficiency at each AP library human target site across the full range of base editors (n = 9). Cas9 and Cas9-NG serve as nuclease controls. 
Rows denote target sites. Columns denote PAM subclass. See also Extended Data Fig. 1 and Supplementary Figs. 2 and 3. d, Head-to-head comparison 
of C > T editing efficiency at different PAMs by ‘standard’ CBEs (top row) and PAM flexible CBEs (bottom row). *P ≤ 0.01. P values were determined with 
two-sided Wilcoxon signed rank test. Boxplots show the median and interquartile range (IQR) and whiskers represent 1.5 × IQR.
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To determine whether sensor editing scores identified in one cell 
line could be extrapolated to other cell types, we repeated HBES 
and MBES screens in four more cell lines: human PC9 and murine 
KrasG12D;Trp53–/– mutant (KPT1) lung adenocarcinomas19, as well 
as immortalized NIH3T3 and KrasG12D/+;Trp53WT/WT pancreatic  

ductal epithelial cells (PDECs)20. In all, we measured editing across 
>200,000 base editor-sgRNA-cell line combinations. Each cell line 
showed high concordance between replicates and different base 
editors (Supplementary Fig. 5). Average editing efficiency varied 
by cell line; however, PAM specificity, editing range and relative  
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efficiency of individual sgRNAs remained highly correlated (Fig. 3c, 
Supplementary Fig. 4b and Extended Data Fig. 5). We observed a 
moderate, nonlinear relationship between Cas9-induced indels and 

BE across all cell lines, where sgRNAs with high BE scores were a 
subset of sgRNAs with efficient Cas9-mediated indel generation 
(Extended Data Fig. 6). These data suggest that the relative potency 
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Fig. 3 | Massively parallel assessment of BE outcomes across thousands of cell line/editor/sgRNA combinations using the sensor assay. a, Top: 
Percentage of all C > T editing (y axis) across Cas9, FNLS, F2X and FNLS-NG at every cytosine among the –5 to 20 positions of the target site (x axis). 
Colored dots specify dinucleotide contexts. Bottom: Percentage of target C > T editing (y axis) across Cas9, FNLS, F2X and FNLS-NG relative to PAM class 
(x axis). Box plots show the median and interquartile range (IQR) and whiskers represent 1.5× IQR. Outliers are shown as dots. See also Supplementary  
Fig. 6. b, Heatmap of BE efficiency across MDA-MD-231, NIH3T3, PC9, PDEC and KPT1 cell lines (columns) at every cytosine among the –5 to 20 positions 
of the target site classified by cytosine base editor and PAM class (rows). See also Supplementary Fig. 6. c, Correlation of individual sgRNA efficiency 
across screen cell lines (PC9, NIH3T3, PDEC and KPT1) compared with MDA-MB-231. Only HBES sgRNAs that had >1% activity in the sensor were  
ranked. See also Extended Data Fig. 5.
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of individual sgRNAs across different cell systems can be predicted 
en masse using the BE sensor assay.

Base editors can exhibit collateral (bystander) cytosine editing, 
whereby C > T mutations are induced in both target and neigh-
boring cytosines in the editing window7. To investigate collateral 
editing, we calculated C > T editing ‘purity’ as the frequency of 
target C > T editing without further mutations. As expected, purity 
decreased with the presence of more cytosines in the target win-
dow, especially with immediately adjacent bystander cytosines 
(Supplementary Fig. 8). Collectively, these results demonstrate that 
the sensor platform can be used to assess ontarget and collateral 
cytosine editing across multiple base editors and thousands of target 
sites in a high-throughput manner.

To directly test how well the BE sensor scores predicted activ-
ity at endogenous targets, we measured editing at 12 independent 
genomic sites with a panel of 13 sgRNAs that showed high editing 
in the sensor assay. Using either FNLS or AncBE4max, endogenous 
editing aligned well with sensor-based estimates, with more than 
50% of cases (7/13) within 10% of the sensor-reported efficiency 
(Fig. 4a and Supplementary Fig. 9a). To ask whether BE sensor 
scores could predict the relative efficiency of target editing given 
a range of possible options, we tiled the R213 site in TP53 with a 
series of seven sgRNAs. In this case, we used the F2X base editor to 
allow editing across the wide range of target positions in this series 
(5–11 bp). Consistent with the data described above (Fig. 4a and 
Supplementary Fig. 9a), sensor estimates closely resembled editing 
at the endogenous locus (Fig. 4b).

Arbab et al. recently reported a machine learning tool (BE-Hive) 
for predicting BE outcomes21. We noted that BE-Hive predictions 
for the TP53.R213 series did not accurately predict editing out-
comes for non-NGG sgRNAs, probably because BE-Hive does not 
incorporate the PAM sequence as a prediction feature. To assess 
this more broadly, we determined the similarity of BE-Hive predic-
tions with the sensor-measured editing activity for the HBES and 
MBES libraries. As expected, given the strong dependence on PAM 
for editing activity, comparison of all sgRNAs showed relatively 
low overall correlation between BE-Hive and BE sensor estimates  
(Fig. 4c, Supplementary Fig. 10 and Supplementary Table 6). 
Restricting our analyses to sgRNAs associated with NGG PAMs 
improved the correlation (Supplementary Fig. 11); however, much 
of it was driven by low-scoring guides, as focusing on sgRNAs with 
>5% BE sensor activity led to lower overall similarity (Fig. 4c and 
Supplementary Fig. 12). Together, these data show that BE sensor 
editing is well correlated with editing at endogenous sites, allowing 
reliable identification of sgRNAs with high editing efficiency across 
multiple biological contexts.

Noncanonical editing identified by BE sensor. APOBEC-driven 
mutation signatures in cancer include transitions (C > T; signature 2)  
and transversions (C > G; signature 13)22. Cytosine base editors 
(CBEs) containing rAPOBEC1 can induce C > G mutations in some 
contexts12,21. Such ‘noncanonical’ transversion editing could be lev-
eraged to increase the breadth of mutations that can be modeled 
using BE (22% of MSK-IMPACT dataset) (Fig. 2c). Transversion 
editing was apparent in our sensor screen (Fig. 4d) and, for some 
targets, C > G editing occurred at levels greater than C > T editing 
(Extended Data Fig. 7a). Instances of transversion editing (C > R) 
closely resembled editing outcomes at three endogenous loci, cho-
sen for their high (30–60%) predicted C > R editing rates (Fig. 4e). 
As expected, C > R editing by AncBE4max was slightly lower, prob-
ably due to the presence of a further uracil glycosylase inhibitor 
domain23 (Supplementary Fig. 9b).

We next looked at sequence features affecting C > R editing out-
comes and noted that transversion mutations were strongly dis-
favored at CC dinucleotides (average 4% of BE events) but were 
around threefold higher in AC and TC contexts (13% and 12%, 
respectively) (Fig. 4d and Extended Data Fig. 7b). Transversions 
were also disfavored when target cytosines were followed by another 
cytosine (NCC, particularly CCC and GCC) and enriched when fol-
lowed by a thymine (NCT, particularly ACT and TCT) (Extended 
Data Fig. 7b). Comparison across lines revealed that not all cells 
induce transversions with equal efficiency. While MDA-MB-231 
and PC9 cells showed frequent and high level transversion editing, 
NIH3T3, PDEC and KPT1 cells had a very low frequency of C > R 
alterations (Fig. 4d).

We developed a lentiviral BE reporter that drives GFP induc-
tion following target C > G editing (Extended Data Fig. 7c). This 
construct accurately reported cellular C > G editing bias, showing 
efficient C > G induction in MDA-MB-231, PC9 and HCC1806, 
but not NIH3T3 or PANC1, consistent with sensor measurements  
(Fig. 4f). Notably, C > G editing efficiency in the reporter was 
similar to average C > G editing seen at TCT motifs (Fig. 4d,f and 
Extended Data Fig. 7b), suggesting it is a useful tool for gauging 
C > R editing potential in different cells. Thus, transversion edit-
ing bias is not a universal feature of human cancer cells. Systematic 
studies employing this reporter could provide insight into mecha-
nisms that dictate this activity.

Sensor-validated sgRNAs streamline in vivo model develop-
ment. A main advantage of sensor-based validation is the ability 
to identify active sgRNAs that generate specific missense muta-
tions with little-to-no collateral editing. Such guides can be used to 
interrogate the impact of specific mutations in vitro and in vivo. As 

Fig. 4 | Validation of canonical and noncanonical BE activity predicted by the sensor assay. a, Experimental validation of C > T editing activity observed 
in the sensor (blue) when targeting endogenous (yellow) loci in FNLS-PC9 cells. Each dot corresponds to a single replicate (n = 2 for sensor screening 
data; n = 3 for endogenous validation). Data are presented as mean values ± s.e.m. BE rates (efficiencies) across endogenous loci were determined via 
NGS of edited loci and analyzed using CRISPResso2 (ref. 48). See also Extended Data Fig. 7 and Supplementary Fig. 9. No direct statistical comparisons 
were performed between sensor and endogenous C > T editing data because sensor screens were performed in duplicate. b, Top: schematic of the human 
TP53-R213 locus. Horizontal bars denote sgRNAs, and numbers to the right denote sgRNA identifiers (based on HBES whitelists). Target cytosine is labeled 
in blue. Bottom: heatmap comparing C > T editing efficiency in an allelic series of TP53-R213 sgRNAs between the sensor results, F2X-MDA-MB-231 cells 
targeting the endogenous locus and BE-Hive predictions (CP1028)21. c, Correlation of observed BE efficiency measured by the sensor in MDA-MB-231 
cells versus efficiencies predicted by the BE-HIVE algorithm21 classified by BE enzyme and cytosine position (fill). Here, the HBES library was stratified to 
include all targets (top) and all NGG targets showing >5% editing in the sensor (bottom). FNLS and FNLS-NG values were compared with BE4 prediction 
results and F2X values were compared with CP1028 prediction results. See also Supplementary Figs. 10–12. d, Canonical (C > T) and noncanonical 
(C > A and C > G) BE activity profiled across all screen cell lines (rows) at every cytosine in position –5 to –20 of HBES library targets. e, Validation of 
noncanonical C > R editing events at sensor target sites (blue) and endogenous targets (yellow). Each dot corresponds to a single replicate (n = 2 for 
sensor screening data; n = 3 for endogenous validation). Data are presented as mean values ± s.e.m. BE rates (efficiencies) across endogenous loci were 
determined via NGS of edited loci and analyzed using CRISPResso2 (ref. 48). See also Extended Data Fig. 7 and Supplementary Fig. 9. f, A heatmap of a 
panel of mammalian cell lines expressing FNLS and/or AncBE4max transduced with either canonical C > T (top) or noncanonical C > G (bottom) GO 
reporters measuring GFP induction in mScarlet-infected base editor cells. See also Extended Data Fig. 7.
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Fig. 5 | In vivo validation of cancer-associated single nucleotide TP53 variants using BE. a, Candidate TP53 variant-specific BE sgRNAs sorted by C > T 
efficiency scores obtained from FNLS-MDA-MB-231 MBES screening data. Only TP53 sgRNAs with a percentage of C > T editing >25% and no collateral 
cytosine editing are shown. Data are presented as mean values ± s.e.m. b, Lollipop plot showing frequency of candidate TP53 variants detected in the 
MSK-IMPACT cohort. TAD, transactivation domain; DBD, DNA binding domain; OD, oligomerization domain. c, FNLS-expressing KrasG12D/+; Trp53WT/WT 
PDECs were transduced with sgRNAs designed to introduce defined mutations in the mouse Trp53 gene followed by plating at low density (1,000 cells 
per well in six-well plates; three wells per variant) and treatment with DMSO or Nutlin-3 (10 μM). Upper panel: plates were stained with crystal violet to 
assess colony formation capacity. Bottom panel: quantification of crystal violet staining; n = 3 wells per variant (or control) per treatment arm (control 
or Nutlin-3). Data are representative of n = 3 independent experiments and are presented as mean values ± s.d. *P ≤ 0.05, **P ≤ 0.01. P values were 
calculated using unpaired, two-sided t-test. d, Schematic for in vivo validation of candidate TP53 variants via orthotopic transplantation of F2X-expressing 
KrasG12D/+; Trp53WT/WT PDECs transduced with sgRNAs designed to introduce defined mutations in the mouse Trp53 gene. e, Survival analysis of mice 
transplanted with F2X-expressing PDECs transduced with specific Trp53-targeting BE sgRNAs; n = 5 mice per mutation. See also Extended Data Fig. 8 and 
Supplementary Figs. 13 and 14. **P ≤ 0.01. P values were calculated using the log-rank test. f, Frequency of target C > T editing in tumors from transplanted 
mice. Each dot corresponds to a single tumor or tumor fragment. Data are presented as mean values ± s.d. Target C > T editing was measured by NGS of 
amplified target loci and data were analyzed using CRISPResso2 (ref. 48). See also Extended Data Fig. 8 and Supplementary Figs. 13 and 14.
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proof-of-concept, we focused on the TP53 tumor suppressor gene, 
which is the most frequently mutated gene in cancer and shows 
remarkable mutational heterogeneity24. Hundreds of TP53 SNVs 
have been identified16, most of which are missense variants that 
may have loss-of-function, gain-of-function, dominant negative 
or neomorphic behavior24,25. Our mouse sensor library contained 
244 sgRNAs targeting 62 distinct and recurrent p53 mutations that 
were represented in the mouse library. To measure the tumori-
genic potential of p53 variants, we used immortalized murine 
KrasG12D/+;Trp53WT/WT PDECs, a genetically defined and physi-
ologically relevant setting to model pancreatic cancer20. To test this 
concept, we cloned five sensor-validated sgRNAs to introduce spe-
cific missense mutations in Trp53 with low collateral activity (high 
‘purity’) (C135Y, M237I, G199E, E271K and R337C; human TP53 
gene nomenclature) (Fig. 5a,b). Introduction of each sgRNA into 
F2X-PDECs enabled low density growth in the presence of Nutlin-3 
(ref. 26) (Fig. 5c), suggesting these mutations compromise p53 func-
tion. To test whether these mutations impaired tumor suppression 
in vivo, we transplanted PDECs transduced with Trp53 or control 
sgRNAs into the pancreas of recipient mice (n = 5 mice per sgRNA) 
(Fig. 5d). In cases where the sensor assay predicted multiple sgRNAs 
for a single mutation, we included all available sgRNAs to rule out 
off-target effects (Extended Data Fig. 8a). Orthotopic transplanta-
tion of control PDECs does not lead to pancreatic tumor develop-
ment (up to 200 days), but all mice transplanted with PDECs carrying 
Trp53 sgRNAs succumbed to pancreatic tumors (46–99 days)  
(Fig. 5e and Extended Data Fig. 8a). In each case, analysis of bulk 
tumor tissue showed high frequency of C > T mutations at their 
respective sites in the Trp53 gene (Fig. 5f, Extended Data Fig. 8b,e 
and Supplementary Figs. 13 and 14). Identical results were obtained 
with FNLS-PDECs (n = 5 mice per mutation) (Extended Data  
Fig. 8c,d). Thus, BE-sensor validated sgRNAs can be used to synchro-
nously engineer endogenous patient-derived mutations in experi-
mental in vivo systems, facilitating systematic variant-to-phenotype 
studies in cancer and other diseases.

Pooled BE sensor screens to interrogate cancer variants. The 
experiments above demonstrated the robustness of BE sensor- 
validated sgRNAs for in vivo interrogation of cancer variants. 
Encouraged by these results, we set out to test whether BE sen-
sor libraries could be coupled with high-throughput screen-
ing approaches for massively parallel functional interrogation 
of cancer-associated SNVs. An advantage of screening BE sensor 
libraries is that cells should harbor editing at both the sensor mod-
ule and endogenous target site. Hence, variant-specific effects on 

cellular phenotype can be correlated with editing precision and effi-
ciency at sensor target sites, minimizing false positives. In theory, 
this approach should also identify sgRNAs that edit their target but 
induce no phenotypic effect. To test this concept, we transduced 
KrasG12D/+;Trp53WT/WT FNLS-PDECs with the MBES library at low 
multiplicity of infection and >1,000× representation (Fig. 6a). Six 
technical replicates of PDEC-MBES cells (Supplementary Fig. 15) 
were used for a multitime point in vitro proliferation screen per-
formed for around 36 cumulative population doublings to quantita-
tively assess sgRNA activity and abundance in parallel.

Pairwise correlation analyses at the first timepoint (day 5) dem-
onstrated excellent technical screening performance and replicates 
diverged at later time points (Fig. 6b). To quantify sensor editing 
and sgRNA enrichment, we used our analytical pipeline to calcu-
late target editing efficiency, followed by MAGeCK27,28 to deter-
mine changes in sgRNA abundance (Supplementary Table 7).  
Focusing on day 30 versus day 5 comparisons, our analysis iden-
tified 150 sgRNAs that seemed to promote (n = 125; log2 fold 
change (LFC) ≥ 1.5) or inhibit (n = 25; LFC ≤ –1.5) PDEC prolif-
eration (false discovery rate ≤ 0.01) (Fig. 6c,d and Supplementary 
Table 7b). Significantly enriched sgRNAs were predicted to install 
mutations in genes with known oncogenic activity, including Jak3, 
Fgfr2 and Egfr (Supplementary Table 7d). Mutations in genes with 
known tumor suppressive function were also represented, including 
Trp53, Apc, Fbxw7, Nf2 and Chek2 (Supplementary Table 7d). In 
fact, after filtering for sgRNAs with more than 20% editing activ-
ity, 72% of enriched sgRNAs (26/36) targeted known or probable 
oncogenic mutations, compared with 38% in nonenriched sgRNAs 
(P = 0.0003; Fisher’s exact test) (Extended Data Fig. 9a,b). Notably, 
more than half (19/36) of the enriched sgRNAs targeted Trp53, con-
sistent with our proof-of-concept experiments (Fig. 6) and the role 
of p53 in suppressing mutant Kras-driven proliferation29 (Fig. 6c,d). 
In fact, collapsing the data to ‘gene-level’ scores identified Trp53 as 
the only significantly scoring gene in this screen (false discovery 
rate < 0.01) (Supplementary Table 7c).

Using Trp53 as a case study, we next compared fitness scores  
with sensor editing data from the same screen. Most sgRNAs 
enriched in the proliferation screen showed high editing activ-
ity, including two potent sgRNAs we previously validated in vivo 
(C135Y and M237I) (Fig. 6e and Extended Data Fig. 8c). We 
identified several Trp53 missense and nonsense mutations that 
were enriched exclusively in vitro or in vivo (E271K, R337C and 
G199E), highlighting the importance of the context in measur-
ing p53 variant fitness advantage. Most enriched sgRNAs dem-
onstrated relatively high sensor editing but, notably, Trp53-R213 

Fig. 6 | Massively parallel interrogation of cancer-associated single nucleotide variants via pooled BE screening. a, Schematic of BE proliferation screen. 
Briefly, FNLS-expressing PDECs were transduced with the MBES library at 1,000× representation followed by selection and culture for a total of around 
36 cumulative population doublings. A total of n = 6 independent transduction replicates were established and cultured separately. Cells were sampled at 
multiple time points over the course of the screen until reaching the final time point at day 30 post-transduction. Screens were deconvoluted using NGS 
(see Methods for more details). b, Heatmap for correlation coefficients between samples. See also Supplementary Fig. 15. c, Waterfall plots comparing 
sgRNA log fold changes between days 5 and 30 post-transduction. Colors represent mean C>T editing percentage of each target cytosine at day 30. Top 
plot denotes all sgRNAs (and corresponding sensor target sites). Bottom plot denotes Trp53 sgRNAs (and corresponding sensor target sites). d, Bubble 
plot comparing sgRNA log fold changes with mean frequency of C > T editing in the sensor target site between days 5 and 30 post-transduction. Blue 
bubbles denote Trp53 sgRNAs (and corresponding sensor target sites). Yellow bubbles denote all other sgRNAs (and corresponding sensor target sites). 
Inset denotes MaGeCK27,28 score (Supplementary Table 7). Note the use of human gene-based nomenclature of protein residues (for example, p53_Q100 
corresponds to Q97 in mouse Trp53). e, Schematic of the mouse Trp53-R210 locus (TP53-R213 in humans). The number to the right of the sgRNA is the 
sgRNA identifier (Trp53_4315; based on MBES whitelists). Target cytosines are labeled in red. As denoted by the black arrows in the diagram, C > T BE of 
C6 and C11 is predicted to produce the T208I and R210C mutations, respectively. See also Supplementary Fig. 13. f, In vivo validation of T208I mutation 
via orthotopic transplantation of F2X-expressing PDECs transduced with the Trp53_4315 sgRNA. Median survival for mice harboring tumors initiated by 
the Trp53_4315 sgRNA was 53 days; n = 5 mice per condition. Data are presented as mean values ± s.d. *P ≤ 0.01, Log-rank test. See also Supplementary 
Fig. 13. g, Frequency of target C > T editing in tumors from mice transplanted with F2X-expressing PDECs transduced with the Trp53_4315 sgRNA. Each 
dot corresponds to a single tumor or tumor fragment (total n = 8). Data are presented as mean values ± s.d. Target C > T editing was measured by NGS of 
amplified target loci and data were analyzed using CRISPResso2 (ref. 48). See also Supplementary Fig. 13.
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sgRNA showed more than tenfold enrichment in the screen, despite 
less than 3% sensor target editing. Inspection of the cognate sen-
sor cassette revealed that this sgRNA showed a high level of edit-
ing at an adjacent cytosine, creating a T211I mutation (Fig. 6e)—a 
variant also observed in human cancers16,30. Mice transplanted with 
Trp53T208I cells (corresponding to human TP53T211I) succumbed 
to a fully penetrant disease (median survival of 53 days) (Fig. 6f). 
Sequencing analysis of bulk tumor tissue gDNA confirmed the 
C > T (Trp53T208I) mutation, with <15% C > T editing at the cyto-
sine in R210 (corresponding to human TP53R213) (Fig. 6g), implying 
that T208I is the oncogenic driver in this case. These data iden-
tify multiple TP53 missense mutations as drivers of proliferation 
in nontransformed pancreatic epithelium and establish Trp53T208I/

TP53T211I as a bona fide driver mutation in this mouse model of  
pancreatic cancer.

A flexible platform of BE sensor predictions. Mutation databases 
are expanding, and new Cas and base editor variants are being iden-
tified at a rapid pace. Motivated by this reality, we expanded the 
capabilities of AMINEsearch (Methods) and applied it to a more 
recent release of MSK-IMPACT that contains sequencing of 47,550 
tumors (Extended Data Fig. 10 and Supplementary Table 8g–j). The 
characteristics of an expanded set of Cas variants and base editors 
(including adenine base editors/ABEs8) were included as input and 
can be leveraged to select tools tailored to experiments that require 
maximum coverage or specificity (Supplementary Fig. 16).
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Discussion
BE is an efficient strategy with which to engineer and study SNVs, 
yet the identification of effective sgRNA-base editor combinations 
remains challenging. Here, we describe a versatile sensor-based BE 
platform that enables identification of efficient sgRNAs from large, 
pooled libraries across multiple species, cell lines and base editor 
configurations. We show that sensor predictions can accelerate the 
characterization of cancer-associated SNVs in vivo and demon-
strate that integrating a BE sensor can support the interpretation of 
BE genetic screens.

All-in-one library strategies have been described for measur-
ing Cas9 and BE outcomes21,31–34. Such libraries have been used to 
develop machine learning tools to predict activity and purity of BE 
tools21,32,33,35. These tools are useful for their scope of prediction, but 
predictions can diverge significantly from experimentally observed 
editing at endogenous sites (Fig. 4 and Supplementary Figs. 6 and 
10–12). Our work shows that sensor-based activity estimates closely 
reflect editing outcomes at endogenous loci. Moreover, although 
it is possible that cell-specific differences in DNA accessibility or 
expression levels of base editors could impact editing efficiency, our 
results show relative consistency across cell lines, suggesting that 
sequence context is an important determinant of editing.

In addition to expected target C > T editing, we observed fre-
quent ‘noncanonical’ (C > R) transversion editing. Transversion 
frequencies were influenced by local sequence features surround-
ing target cytosines (Fig. 4 and Extended Data Fig. 7b) and cell 
line. Analysis of multiple cell lines revealed that transversion edit-
ing is not universal and cannot be predicted easily by association 
with Signature 13 (APOBEC-driven C > G mutations)22. Our data 
showed that C > R editing occurs most frequently at DCT motifs 
(ACT > TCT > GCT) and is strongly disfavored when the target 
C is flanked by another cytosine. This observation is similar, but 
not identical, to that reported by Arbab et al.21, who reported RCT 
motifs as the most prone to transversion editing. This distinc-
tion may reflect different cell types used or enrichment of specific 
genomic sites from cancer-associated mutations in our dataset 
compared with rationally designed sequences used in their study. 
Recently, multiple groups have described new base editors (CGBEs) 
that enable efficient transversion editing9,36–38. The ability to engi-
neer transversions will significantly expand the mutation reper-
toire that can be engineered using BE. It remains unclear whether  
CGBE editors can overcome cell-line-dependent effects that limit 
transversion editing.

Gene function is complex, reflected by the diversity of pheno-
types, including therapeutic responses, that can be driven by dis-
tinct variant alleles39. Building defined genetic models of specific 
oncogenic alterations is critical to define their direct impact and to 
reveal new treatment strategies. Similarly, BE screens offer a new 
approach to interrogate gene variant function en masse40,41. Unlike 
traditional CRISPR screens that provide ‘gene-level’ information, 
BE screens reveal ‘amino acid level’ information and, as such, can-
not always rely on the activity of multiple sgRNAs to define ‘scor-
ing’ hits. We argue that incorporation of a BE sensor cassette in BE 
libraries will enhance the interpretation of BE screens by provid-
ing preliminary validation of sgRNA activity, flagging possible false 
positives and improving the classification of phenotype-neutral 
mutational events. Indeed, our proof-of-concept fitness screen in 
nontransformed pancreatic epithelial cells identified multiple can-
didate oncogenic variants spread across a collection of genes. These 
included Trp53 mutations that drive increased proliferation, but also 
those that induce target mutations without driving increased cellular 
fitness (at least in vitro) or that potentially exhibit context-specific 
phenotypes. Future iterations of this approach could employ unique 
molecular identifiers embedded in sensor backbones or sgRNAs42 to 
account for clonal phenotypes or explain variant-specific transcrip-
tional effects using single cell RNA sequencing43–45. Furthermore, 

the sensor framework should be compatible with emerging genome 
editing technologies like Prime Editing46,47.

For those who wish to use individual validated BE sgRNAs or 
design alternate BE sensor libraries, we developed a web applica-
tion, BE-SCAN (BE sensor-validated cancer-associated mutations; 
https://dowlab.shinyapps.io/BEscan/) that allows browsing and 
selection of guides by species, gene, target mutation and/or base 
editor. Further, the expanded AMINEsearch-defined (nonsen-
sor validated) collection of somatic cancer mutations is also avail-
able as an interactive portal in BE-SCAN. To enable the creation 
of sensor-based BE libraries beyond those described in this study, 
the full AMINEsearch pipeline is available (https://github.com/
Kastenhuber/AMINEsearch) and can be run on any set of muta-
tions and base editor characteristics. Beyond cancer-associated 
somatic mutations, we envision this approach could be employed 
to functionally annotate genome-wide association study variants 
and mutations associated with heritable genetic disease. Whereas 
we performed proliferation screens in immortalized cells, screening 
of genetic variants could just as easily be conducted using any sort-
able cellular feature or biosensor. We expect that the compendium 
of experimentally vetted BE tools described here will accelerate the 
development of next-generation allele-focused in vitro and in vivo 
cancer models.
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Methods
Plasmids and sgRNA cloning. Base editor plasmids. The following lentiviral BE 
plasmids were used in this manuscript: FNLS (Addgene, catalog no. 110841),  
AncBE4max (this manuscript), FNLS-2X (F2X) (Addgene, catalog no. 110840),  
FNLS-HF1 (HF1) (Addgene, catalog no. 110866), FNLS-HiFi (HiFi) (Addgene, 
catalog no. 136902), FNLS-NG (NG) (Addgene, catalog no. 136900), 
FNLS-HiFi-NG (HiFi-NG) (Addgene, catalog no. 136903), FNLS-VQR (VQR) 
(this manuscript) and xFNLS (Addgene, catalog no. 110872). All new plasmids  
and libraries will be available from Addgene.

CRISPR nuclease plasmids. The following CRISPR nuclease plasmids were used  
in this manuscript: lentiCas9-Blast (Addgene, catalog no. 52962), Cas9-NG 
(Addgene, catalog no. 117919) and Cas9-Puro (Addgene, catalog no. 110837).

sgRNA plasmids. The following sgRNA plasmids were used in this manuscript: 
LRT2B (Addgene, catalog no. 110854) (ref. 10), pUSEPR (U6-sgRNA-EFS-Puro-P
2A-TurboRFP)49 and pUSEBR (pUSE-Blast-P2A-TurboRFP) (this manuscript). 
We cloned Esp3I/BsmBI-compatible annealed and phosphorylated oligos encoding 
sgRNAs into Esp3I/BsmBI-linearized pLRT2B, pUSEPR or pUSEBR using 
high-concentration T4 DNA ligase (NEB). A 5′ G (to boost U6 transcriptional 
initiation) was added to sgRNAs that lacked it either by appending it to the 5′ or 
by substituting the first nucleotide in the 5′ position for a G. All sgRNA sequences 
used are listed in Supplementary Table 9.

Other plasmids. The gene ontology (GO) (C > G) reporter was cloned by modifying 
the GO reporter system as described in ref. 12. Briefly a custom GFP(ATC) 
gBlock cassette was inserted to EcoRI- and BsrgI-digested mUGISGO by standard 
InFusion assembly protocol. To insert GO3 sgRNA (C > G targeting guide), 
mU6-GO3-scaffold was amplified. Both inserts were digested with XhoI and Nsil 
and ligated using T4 DNA ligase.

Cell culture. HEK293T (ATCC CRL-3216), A549 (CCL-185), MDA-MB-231 
(ATCC HTB-26) and KPT1 cells were cultured in DMEM supplemented with 
10% fetal bovine serum (FBS) and 100 IU ml–1 penicillin/streptomycin. KP cells 
were a kind gift from T. Jacks (MIT). PC9 cells were a kind gift from H. Varmus 
(Weill Cornell) and cultured in RPMI supplemented with 10% FBS and 100 IU ml–1 
penicillin/streptomycin. NIH3T3 cells (ATCC CRL-1658) were cultured in 
DMEM supplemented with 10% fetal calf serum (FCS) and 100 IU ml–1 penicillin/
streptomycin. PDECs20 were a kind gift from D. Bar-Sagi (New York University) 
and cultured in collagen-coated plates (100 μg ml–1 PureCol 5005, Advanced 
Biomatrix) with Advanced DMEM/F12 supplemented with 10% FBS (Gibco), 
100 IU ml–1 penicillin/streptomycin (Gibco), 100 mM Glutamax (Gibco), ITS 
Supplement (Sigma), 0.1 mg ml–1 soy trypsin-inhibitor (Gibco), bovine pituitary 
extract (Gibco), 5 nM T3 (Sigma), 100 μg ml–1 cholera toxin (Sigma), 4 μg ml–1 
Dexamethasone (Sigma) and 10 ng ml–1 human EGF (Preprotech).

Virus production. Lentiviruses were produced by cotransfection of HEK293T cells 
with the relevant lentiviral transfer vector and packaging vectors psPax2 
(Addgene, catalog no. 12260) and pMD2.G (Addgene, catalog no. 12259) using 
Lipofectamine 2000 (Invitrogen). Viral supernatants were collected at 48 and 72 h 
post-transfection and stored at –80°C.

Drug treatments. Nutlin-3 (Selleck Chemicals, S1061) was dissolved in DMSO at a 
stock concentration of 10 mM and used at a final concentration of 10 μM.

Flow cytometric analyses. GO validation experiments were measured in either a 
Thermo Fisher 2018 Attune NxT flow cytometer or a Guava Easycyte (Millipore). 
Fluorescence-assisted cell sorting was performed in either BD FACS Aria II or 
Sony MA900 cell sorters.

Protein analysis. 231, PC9 and 3T3 screen pellets were resuspended with 500 μl 
radioimmunoprecipitation assay buffer then centrifuged at 4°C at 13,000 rpm 
to collect protein lysates. Antibodies used for western blot analyses were: Cas9 
(CellSignaling, catalog no. 19526S) and Actin (Abcam, catalog no. ab49900).

Animal work. Animals. All mouse experiments were approved by the Memorial 
Sloan-Kettering Cancer Center (MSKCC) Internal Animal Care and Use 
Committee under MSKCC IACUC protocol 11-06-018. Mice were maintained 
under specific pathogen-free conditions, and food and water were provided ad 
libitum. Foxn1nu (Swiss nude) mice were purchased from Envigo. All mice used 
were 6- to 8 week-old females.

Pancreatic orthotopic transplants. For transplantation of PDEC cells into the 
pancreas of adult mice, animals were anesthetized and a survival surgery was 
performed to expose the pancreas. Independent of genotype, a total of 1 × 105 
PDEC cells resuspended in 25 μl of growth factor reduced Matrigel (354230; 
Corning) diluted 1:1 with cold OptiMEM (Gibco) were injected into the tail region 
of the pancreas of each mouse. Mice were monitored for tumor development over 
time by abdominal palpation and were euthanized upon developing overt disease 

and becoming moribund following disease monitoring guidelines of IACUC and 
the MSKCC Animal Facility.

Genomic DNA isolation. Isolation of genomic DNA from cells. Genomic DNA 
(gDNA) was extracted from cells using the DNeasy Blood and Tissue Kit (Qiagen) 
following the manufacturer’s instructions. Cell pellets were processed in parallel 
and the resulting gDNA was resuspended in 100–200 μl of 10 mM Tris-Cl; 
0.5 mM EDTA; pH 9.0. Samples from corresponding replicates from MBES and 
HBES screens were pooled at the gDNA level, measured using a NanoDrop 2000 
(ThermoFisher) and normalized before performing sequencing deconvolution.

Isolation of gDNA from tumor tissues. gDNA was extracted from tissues using the 
DNeasy Blood and Tissue Kit (Qiagen) following manufacturer’s instructions. 
Multiple tumor fragments or nodules were microdissected and either processed 
immediately by finely mincing the tissue and incubating overnight in a lysis buffer 
containing proteinase K and following the manufacturer protocol or snap-frozen 
in liquid nitrogen and stored at –80°C until day of processing. Resulting gDNA 
was resuspended in 100–200 μl of 10 mM Tris-Cl; 0.5 mM EDTA; pH 9.0, measured 
using a NanoDrop 2000 (ThermoFisher), and normalized before assessing genome 
editing at the relevant locus of interest using deep sequencing.

AMINEsearch bioinformatic pipeline. We developed a genome editing design 
tool, AMINEsearch, implemented in R, to comprehensively build libraries of 
annotated gene editing reagents to model a user-defined set of mutations. This 
algorithm can be applied to any sequencing dataset that uses standard maf format 
files. For further description of the algorithm and analysis, including the process 
of library design, offtarget analysis and conservation of variant protein sequence 
between human and mouse, see Supplementary Note 1.

HBES and MBES library design. MSK-IMPACT sequencing data (n = 21,694 
tumors) was used to design sgRNAs and sensors compatible with commonly 
used BE configurations, incorporating Cas variants (SpCas9, Cas9-NG, xCas9 
and ScCas9) combined in the FNLS or F2X (expanded window) BE vector 
variants (Supplementary Table 2a,b). IMPACT-derived outputs of AMINEsearch 
(Supplementary Table 2c,e) were used to compile unique sensor constructs to 
construct HBES (Supplementary Table 2d) and MBES libraries (Supplementary 
Table 2f) that target the human and mouse genome, respectively. These libraries 
served as the basis for experimental validation and screening of BE sensors, which 
are available under the ‘Sensor validated’ tab of the BE-SCAN web portal (https://
dowlab.shinyapps.io/BEscan/).

AMINEsearch v.2. Modifications to the algorithm were made to increase 
functionality of the AMINEsearch algorithm. Specifically, modifications were 
made to accommodate BE variants that edit outside the region complementary 
to the sgRNA (CDA-BE4). As the demands of running larger dataset grew, we 
incorporated the capacity to run parallel execution on multiple cores or processors. 
The option to reverse the effects of mutations, rather than model them, given a 
list of pathogenic mutations as input, was added. A known issue was addressed 
to handle multiple genotypes that converge on the same protein sequence 
substitution as independent mutations. Version 2 includes the ability to track 
expected variant protein sequence when modeling human mutations in the mouse 
genome (Supplementary Note 1). Versions 1 and 2 of the algorithm can be accessed 
at https://github.com/Kastenhuber/AMINEsearch/tree/AMINEsearch_v1.0 
and https://github.com/Kastenhuber/AMINEsearch/tree/AMINEsearch_v2.0, 
respectively, and are generalizable to analyze new mutation datasets and/or new 
base editor configurations.

Exploratory set of BE sensor predictions. We applied the algorithm to the recently 
updated mutation dataset from the MSK-IMPACT platform, containing 341,736 
total somatic cancer SNVs derived from targeted sequencing of 47,550 tumor 
samples (Supplementary Fig. 17). This targeted sequencing panel captures the 
coding region of up to 580 genes. Candidates for BE included 5,542 unique SNVs, 
classified as missense, nonsense, splice site or nonstop mutations, which were 
observed six or more times (>0.01% frequency). We considered all combinations 
of 13 Cas9 orthologs and 11 deaminases, yielding 143 possible base editor 
configurations (Supplementary Table 8). This includes configurations that have 
been characterized extensively as well as combinations of Cas9 orthologs and 
deaminases that have not yet been assembled and used experimentally. Collectively, 
this exploratory set of sgRNA predictions provides a broad set of options to 
generate mutations in human and mouse (Supplementary Table 8). A searchable, 
filterable interface for the exploratory predicted set of sgRNAs are available under 
the ‘Sensor Design—Human’ and ‘Sensor Design—Mouse’ tabs in the shiny app 
web portal alongside sensor validated sgRNAs in BE-SCAN (https://dowlab.
shinyapps.io/BEscan/).

Design and construction of MBES and HBES libraries. BE sensor module design. 
Each sensor module is composed of the following parts: (1) a 22 nt long 5′ adapter/
priming site with an Esp3I restriction site; (2) a 20 nt long 5′ G-containing sgRNA; 
(3) a 93 nt long improved SpCas9 sgRNA scaffold partially based on Chen et al.50; 
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(4) an 11 nt long sequence corresponding to the 5′ flanking sequence of the 
endogenous target site; (5) the 23 nt cognate target site; (6) a 7 nt long sequence 
corresponding to the 3′ flanking sequence of the endogenous target site and  
(7) a 28 nt long 3′ adapter/priming site with a EcoRI restriction site. Thus, oligos 
encoding individual sensor modules are 204 nt long.

Cloning of MBES and HBES libraries. Due to longer-than-average oligonucleotide 
length, early attempts at design and construction of sensor libraries showed 
unacceptable synthesis and assembly error rates where, in some instances, over 
half of the sensors before or after assembly into the backbone were found to 
harbor insertions, deletions, single nucleotide mutations and incorrect chimeric 
sgRNA-target site molecules (data not shown). Through extensive trial and 
error, we found that assembling sensor libraries using Agilent’s High Fidelity 
oligonucleotide synthesis platform significantly mitigated these issues.

All-PAM sensor (APS) (1,152 oligos white-listed), MBES (4,686 oligos) and 
HBES (5,855 oligos) libraries were cloned into the pLRT2B backbone10 as follows 
(all library oligos are listed in Supplementary Table 2). Briefly, each oligonucleotide 
pool was amplified using forward and reverse primers that append Esp3I and EcoRI 
sites to the 5′ and 3′ ends of the sensor insert, purified using the QIAquick PCR 
Purification Kit (Qiagen) and ligated into Esp3I-digested and dephosphorylated 
pLRT2B vector using high-concentration T4 DNA ligase (NEB) (all cloning and 
sequencing oligos are listed in Supplementary Table 9). To ensure maximum 
library recovery, we set up n = 24 parallel PCR reactions per pool. A minimum of 
2.4 μg of ligated pLRT2B plasmid DNA per pool (corresponding to n = 8 ligations) 
was electroporated into Endura electrocompetent cells (Lucigen), recovered for 1 h 
at 37°C, plated across four 15-cm Luria-Bertani (LB)-carbenicillin plates (Teknova) 
and incubated at 37°C for 16 h. The total number of bacterial colonies per pool 
was quantified using serial dilution plates to ensure a library representation of 
>10,000×. The next morning, bacterial colonies were scraped and briefly expanded 
for 4 h at 37°C in 500 ml of LB-carbenicillin. Plasmid DNA was isolated using 
the Plasmid Plus Maxi Kit (Qiagen). To assess sensor distribution and fidelity 
of assembly per pool, we amplified the sensor region using primers that append 
Illumina sequencing adapters on the 5′ and 3′ ends of the amplicon, as well as 
a random nucleotide stagger and unique demultiplexing barcode on the 5′ end 
(Supplementary Table 9). Library amplicons were size-selected on a 2.5% agarose 
gel, purified using the QIAquick Gel Extraction Kit (Qiagen) and sequenced on an 
Illumina MiSeq instrument.

Analysis of BE activity using the GO reporter system. Base-editor-expressing cells 
were plated at a density of 5,000 cells per well in 12-well plates and transduced 
24 h later with a defined amount of GO reporter to achieve 20–50% transduction 
efficiency. Virus-containing medium was replaced with complete medium 
24 h post-transduction, and cells were harvested for flow cytometry at 96 h 
post-transduction. We used an Attune NxT flow cytometer (Thermo Fisher).  
Cells were trypsinized with a 100 μl of 0.25% Trypsin+EDTA and resuspended in 
300 μl of complete medium in a 96-well U-bottom plate. Data were acquired at a 
flow rate of 500 μl min–1 and at least 10,000 events from the single cell population 
gating were recorded.

Screening and deconvolution of MBES and HBES libraries. Screening of 
MBES and HBES libraries. We first screened the APS library in MDA-MB-231 
cells expressing one of nine different base editors, as well as either the Cas9 or 
Cas9-NG nucleases as cutting controls. APS screens were performed essentially 
as described below in detail. We then screened a total of five mouse and human 
base-editor-expressing cell lines with either MBES or HBES libraries using the 
following approach. Human cell lines (MDA-MD-231 and PC9) were screened 
with MBES to minimize fitness differences between sensor modules due to 
endogenous targeting of genes that suppress cellular proliferation. Following the 
same rationale, mouse cell lines (KPT1, NIH3T3 and PDECs) were screened with 
HBES. Each screen (including the APS set) was performed as follows. To ensure 
that most cells harbor a single sgRNA integration event, we determined the volume 
of viral supernatant that would achieve an MOI between around 0.3 and 0.5 upon 
standard transduction of a population of base editor-expressing cells. All screens 
were performed in technical duplicate and each step of the screen—from infection 
to sequencing—was optimized to achieve a minimum representation of 1,000×. 
For instance, to ensure a representation of >1,000× for HBES libraries at the 
transduction step, we spinfected a total of 24 million cells across two 12-well plates 
per technical replicate using the volume of viral supernatant that would achieve 
a 30% infection rate (around 7.2 million transduced cells per technical replicate). 
At 24 h after infection, cells from each corresponding replicate were pooled into 
a minimum of 2 × 150 mm tissue culture dishes (Corning) and selected with 
Blasticidin S (Gibco) at an empirically determined final concentration ranging 
from 5 μg ml–1 to 30 μg ml–1 depending on the cell line. Cells were cultured and  
kept under Blasticidin selection for 7 days post-transduction. When needed,  
cells were trypsinized and replated at a minimum of 6 million cells per replicate  
to ensure a minimum representation of 1,000×. For PDEC screens, cell 
representation per replicate was maintained at greater than 600× at all points. 
Subsequently, at least 6 million cells were pelleted and stored at –20°C. gDNA  
from cells was isolated using the DNeasy Blood and Tissue Kit (Qiagen)  
following the manufacturer’s guidelines. Genomic DNA was harvested from  

all timepoints and both sensor BE activity and sgRNA abundance were assessed via 
next-generation sequencing (NGS).

Deconvolution of MBES and HBES screens. We assumed that each cell contains 
approximately 6.6 pg of gDNA. Therefore, screen deconvolution at 1,000× required 
sampling around 6 million × 6.6 pg of gDNA, or around 39.6 μg. We employed 
a modified two-step PCR version of the protocol published by Doench et al.51 
adapted to our unique library design. Briefly, we performed an initial PCR, 
whereby the integrated sensor cassettes were amplified from gDNA, followed by a 
second PCR to append Illumina sequencing adapters on the 5′ and 3′ ends of the 
amplicon, as well as a random hexamer and unique demultiplexing barcode on the 
5′ end. Each ‘PCR1’ reaction contained either 25 μl of Q5 High-Fidelity 2× Master 
Mix (NEB), 2.5 μl of Sensor_v6_Fwd Primer (10 μM), 2.5 μl of Sensor_v6_Rev 
Primer (10 μM), and 5 μg of gDNA in 20 μl of water (for a total volume of 50 μl 
per reaction) or 10 μl of Herculase II 5× Master Mix (Agilent), 0.5 μl dNTPs, 2.5 μl 
of Sensor_v6_Fwd Primer (10 μM), 2.5 μl of Sensor_v6_Rev Primer (10 μM), 
1 μl of Herculase II polymerase, and 5 μg of gDNA in 33.5 μl of water (for a 
total volume of 50 μl per reaction). The number of PCR1 reactions was scaled 
accordingly; therefore, we performed eight PCR1 reactions per technical replicate 
and timepoint for all screens. PCR1 amplicons were purified using the QIAquick 
PCR Purification Kit (Qiagen) and used as template for ‘PCR2’ reactions. Each 
PCR2 reaction contained either 25 μl of NEBNext 2× Master Mix (NEB), 2.5 μl of 
a uniquely barcoded PCR2_Fwd Primer (10 μM), 2.5 μl of a common PCR2_Rev 
Primer (10 μM), and 300 ng of PCR1 product in 20 μl of water (for a total volume of 
50 μl per reaction). We performed two PCR2 reactions per PCR1 product. Library 
amplicons were size-selected either on a 2.5% agarose gel and purified using the 
QIAquick Gel Extraction Kit (Qiagen) or using AMPure XP beads (Beckman 
Coulter) followed by normalization, pooling and sequencing on an Illumina 
NextSeq 500 instrument (150 nt paired-end reads). All primer sequences are 
available in Supplementary Table 9. PCR program for PCR1 using Q5 High-Fidelity 
2× Master Mix (NEB) was: (1) 98°C for 30 s; (2) 98°C for 10 s; (3) 55°C for 30 s; 
(4) 72°C for 30 s; (5) Go to step 2 for 24 cycles; (6) 72°C for 2 min; (7) 4°C forever. 
When using Herculase II, denaturation steps were done at 95°C and the initial 
denaturation lasted for 2 min. PCR program for PCR2 using NEBNext 2X Master 
Mix (NEB) was: (1) 98°C for 30 s; (2) 98°C for 10 s; (3) 65°C for 30 s; (4) 72°C for 
30 s; (5) Go to step 2 for 17 cycles; (6) 72°C for 2 min; (7) 4°C forever.

Analysis of MBES and HBES screening data. To quantify BE outcomes, raw 
paired-end FASTQ reads were paired using Pandaseq and merged FASTQ files 
were used as input for downstream analysis. We first removed reads with mutated 
sgRNAs or scaffolds, or reads with nonmatching sgRNA and target sequences (due 
to template switching during PCR amplification). Next, the 5′ scaffold and linker 
were used to associate each sgRNA with the read; sgRNAs that did not match the 
whitelist were also discarded. All remaining reads were aligned to their cognate 
target found in the whitelist, and aligned reads with no indels were considered for 
BE analysis. Sensors that deviated from the expected length were flagged as indels 
and their actual frequency calculated as a specific insertion or deletion. Editing 
events were classified over all cytosines within a –5 to 20 position window of the 
target, where 1 is defined as the first position of the protospacer. Target cytosine 
editing (tCTN, tCGN, tCAN) quantified the frequency of editing at the target 
cytosine regardless of editing at other adjacent cytosines. Target cytosine editing 
without collateral editing (tCT) was measured as specific C > T editing without 
associated mutations at adjacent sites. Purity values were calculated as the ratio of 
tCT/tCTN. Custom code to perform the BE analysis is available at: https://github.
com/schmidt73/base-editing-analysis. All data for APS, HBES and MBES screens 
can be found in Supplementary Tables 1, 4 and 5, respectively.

Comparison of BE sensor screening outcomes with BE-Hive. To consider the 
performance of the BE-Hive BE outcome prediction model in relation to our 
data, we pulled the fully trained network from the Github repository linked by 
Arbab et al.21. This model is split into two parts: a component that predicts the 
probability of any edit occurring, and another that predicts the probability of a 
specific BE outcome, conditioned on any editing occurring. These are referred 
to as the editing efficiency and bystander model, respectively. Per instructions, 
we fed in our input spacer and its 50-mer context to both models and computed 
the posterior probability of each observed outcome using the chain rule. One 
caveat is that the editing efficiency model directly predicts an untransformed 
score, not a probability. To convert this to a probability, we sigmoid transformed 
it into the unit interval [0, 1]. Following the recommendations provided in their 
README file, we first rescaled the score linearly using the mean and s.d. of reads 
before sigmoid transforming it into a probability to account for variance in base 
editor expression by experimental condition and cell type. We note that this is a 
monotonic operation; therefore, it should not affect any SpearmanR correlations 
used to analyze performance.

BE-Hive does not consider PAM sequence as a feature in their prediction 
mode. Given that the PAM is an important determinant of the activity of standard 
base editors, we considered two different sets of sgRNAs in our comparisons. First, 
we considered all sgRNAs used in our screen. Second, we considered only the 
sgRNAs with canonical NGG PAMs.
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Phenotypic screens using BE sensor libraries. Stable base editor-expressing 
KrasG12D/+; Trp53WT/WT PDECs20 were generated by lentiviral transduction with 
FNLS (Addgene, catalog no. 110841) and validated using GO12 (Addgene, catalog 
no. 136896). Phenotypic MBES screens in FNLS-PDECs were set up essentially 
as described above for HBES/MBES sensor screens with a few modifications. 
MBES FNLS-PDEC screens were performed across six independent transduction 
replicates in parallel. Each replicate was maintained at a minimum 500× 
representation at every step of the screen by replating 3 million cells per timepoint 
and pelleting the rest of the cells for gDNA isolation and screen deconvolution. 
Screens ran for approximately 36 cumulative population doublings across 34 days, 
after which we isolated gDNA and proceeded to perform screen deconvolution 
essentially as described above for MBES/HBES screens.

Proliferation screen analysis. Paired-end reads were joined using Pandaseq. 
Merged reads were processed as described for BE analysis above. Total read 
counts for each replicate were used as input for MAGeCK27,28 analysis. Any sgRNA 
with read counts <100 were removed from analysis. Comparisons of T0 (day 5 
post-transduction) versus T1 (day 14) and T2 (day 30 post-transduction) for 
each replicate were performed using MAGeCK to determine log fold changes. BE 
outcomes at the sensor target site were measured concurrently using the sensor 
screen pipeline described above.

Validation experiments. For validation of individual targets, sgRNAs were cloned 
into the lentiviral guide expression vector LRT2B (Addgene, catalog no. 110854) 
and lentiviral particles were produced as described above. Base-editor-expressing 
cells were plated at a density of 25,000 cells per well in 12-well plates and 
were infected 24-h later with enough virus to achieve 50% transduction 
efficiency. Virus-containing medium was replaced with complete medium 24 h 
post-transduction and cells were plated into selection medium containing 3 μg ml–1 
Blasticidin S (Gibco). Experimental cells remained in selection medium until the 
final collection time point at 7 days post-transduction. Final LRT2B infection 
efficiency was determined by measuring the levels of tdTomato in 10% of the 
cells remaining at day 7 using flow cytometry. Genomic DNA was isolated using 
the protocol found on dowlab.org/protocols, and targets were amplified using a 
100 μl reaction following the standard NEB Taq 2× MM protocol with primers 
found in Supplementary Table 9. Each PCR was performed three times per target 
and pooled. Amplicons were confirmed on a 2% agarose gel and PCR purified 
using Qiagen QIAquick PCR purification kit. DNA concentration was measured 
using a Nanodrop and samples were normalized to 20 ng μl–1 and sequenced using 
EZ-amplicon sequencing (MiSeq; 2 × 250 bp) by GENEWIZ, Inc.

Analysis of deep sequencing data from validation experiments. CRISPResso2  
(ref. 48) was used to process sequencing reads from the validation experiments and 
the corresponding sensor sequencing results for each individual target. The data 
was analyzed on default CRISPResso2 base editor mode with exceptions to the 
following parameters for endogenous locus results: -quantification_window_ 
center -15 and sensor results: --quantification_window_size 10 --quantification_ 
window_size 10 --base_editor_output --quantification_window_center -15  
--exclude_bp_from_right 1 --plot_window_size 18. To calculate target C > T 
editing and noncanonical editing, we used the ‘Alleles_frequency_table_around_
sgRNA.txt’ file to get the read counts for a specific allele.

Statistical analyses and data visualization. Analysis and data visualization in R. 
Heatmaps, dotplots and correlation analyses (including correlation graphs) were 
performed in R v.3.6.3 and plots were produced using the ggplot2 and ggpubr 
package. Statistical considerations are reported in each figure legend.

Analysis and data visualization in GraphPad PRISM. More bar plots, survival 
curves and associated statistical analyses were generated using Prism 8 (GraphPad) 
and are indicated in figure legends. Error bars represent s.d., unless otherwise 
noted. We used Student’s t-test (unpaired, two-tailed) to assess significance 
between experimental and control groups, and to calculate P values. P < 0.05 was 
considered statistically significant. Schematics were created using BioRender.com.

Source data availability. All source data (including P values) are available in 
Supplementary Table 10. Processed screening data is available in Supplementary 
Tables 1,4,5 and primary data has been deposited in the SRA repository under 
accession PRJNA746395.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All source data (including P values) are available in Supplementary Table 10. 
Processed screening data is available in Supplementary Tables 1,4,5 and primary 
sequencing data is available at the Sequence Read Archive (SRA) under accession 
PRJNA746395.

Code availability
Code for analysis and data visualization is available at: https://github.com/
schmidt73/base-editing-analysis, https://github.com/Kastenhuber/AMINEsearch 
and https://github.com/lukedow/BEsensor
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Extended Data Fig. 1 | BE efficiency for mouse sgRNAs in the APS library. C > T editing efficiency (%) at each APS library mouse target site across base 
editor enzymes, as indicated. Cas9 and Cas9-NG serve as nuclease controls. Rows denote sgRNAs; columns denote PAM subclass.
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Extended Data Fig. 2 | Cancer somatic mutation-derived base editing sensor libraries. (a) Number of unique recurrent SNVs per gene, ordered by 
mutation frequency of gene. Bars are split to indicate proportion of SNVs targeted (red) or not (black) in the HBES library. (b) Focality of mutations by 
cancer gene classification. Number of cumulative mutations observed in recurrent sites with respect to the number of unique SNVs observed per gene. 
Oncogenes are indicated by red dots and tumor suppressor genes are indicated by blue dots. Mutations in oncogenes tend to be more focal on distinct 
hotspot sites, with greater number of recurrent mutations per unique SNV allele (11.1 vs 6.2 mutations per unique recurrent SNV, p = 0.011, two-tailed 
t-test). (c) Venn diagram of sgRNAs in HBES library compatible with each base editor configuration. (d) Venn diagram of sgRNAs in MBES library 
compatible with each base editor configuration. (e) SNV-level annotation with each color bar sorted in order of observed mutation frequency (top). NV 
characteristics are indicated, including oncogenic function (OncoKB assertion of oncogenic/Likely oncogenic/VUS) and therapeutic implications (OncoKB 
highest level of evidence for drug sensitivity or resistance) {Chakravarty, 2017 #76;Chakravarty, 2021 #105}.
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Extended Data Fig. 3 | Off-target editing predictions for base editing sensor libraries. (a) For sgRNAs in HBES library, distribution of potential off-target 
(OT) sites identified by PAM specificity and extent of mismatch. (b) Number of sgRNAs in HBES library targeting the human genome with 0 (white) and 
1 or more (black) predicted OT sites depending on SPCas9 or Cas9-NG PAM specificity. A greater number of sgRNAs have no predicted OT sites used 
in conjunction with SpCas9 than with Cas9-NG. p < 2.2e-16, 2-sided Fisher’s exact test. (c) For sgRNAs in HBES library, distribution of potential OT sites 
identified by PAM specificity and extent of mismatch. (d) Number of sgRNAs in MBES targeting mouse genome with 0 (white) and 1 or more (black) 
predicted OT sites depending on SPCas9 or Cas9-NG PAM specificity. A greater number of sgRNAs have no predicted OT sites used in conjunction with 
SpCas9 than with Cas9-NG. p < 2.2e-16, 2-sided Fisher’s exact test. (e) Distribution of not-target editable bases (C for CBE) within the editing window 
for HBES library targeting human genome. (f) Distribution of not-target editable bases (C for CBE) within the editing window for MBES library targeting 
mouse genome.
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Extended Data Fig. 4 | Comparison of editing range (editing window) across FNLS, F2X, and FNLS-NG base editors as a function of dinucleotide 
context. Plots represent the mean normalized BE editing efficiency for each base editor (FNLS = yellow, F2X = blue, FNLS-NG = gray) across 5 cell lines 
(rows) and 4 dinucleotide contexts (columns). Area shaded in grey denotes maximum editing range in each condition where normalized BE is above 30% 
(dotted line).

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


ArticlesNAtURE BiotEcHnology

0

2000

4000

6000

8000
N

IH
3T

3 
B

E
 r

an
k

20

40

60

percent_tCTN.x

R = 0.87

F2X FNLS FNLS-NG

0

2000

4000

6000

8000

MDA-MB-231 BE rank

K
P

T
1 

B
E

 r
an

k
A

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000

0

2000

4000

6000

P
D

E
C

 B
E

 r
an

k

R = 0.85 R = 0.87

R = 0.86 R = 0.91 R = 0.90

R = 0.9 R = 0.85 R = 0.82

B

C

Extended Data Fig. 5 | Correlation of sgRNA efficiency ranking. Plots represent correlation of individual sgRNA efficiency rankings between 
MDA-MB-231 and NIH3T3, KPT1, and PDEC cells, as indicated. To reduce noise created by low efficiency sgRNAs, only HBES sgRNAs that had >1% 
activity in the sensor were included. Pearson correlation coefficients are shown; for all comparisons, p < 2.22 e-16.
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Extended Data Fig. 6 | Indel and BE correlation across cell lines. Correlation of indel and C > T editing frequencies for all sgRNAs in the HBES library 
across 5 screen cell lines. Pearson correlation coefficients were calculated using ggpubr(0.4.0) package in R, the p value represents the significance of 
two-sided t-test.
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Extended Data Fig. 7 | Non-canonical cytosine editing identified by BE Sensor. (a) Dotplots show percent C>T and C>G editing for individual target 
cytosines in the HBES library across three BE enzymes (FNLS, F2X and FNLS-NG) and two cell lines (MDA-MB-231 and PC9). Scales on x and y axes are 
not the same; dotted lines indicate 1:1 ratio (b) Ratio of C > G/C > T editing in FNLS-MDA-MB-231 cells transduced with the HBES library classified by 
dinucleotide context (fill) and trinucleotide context (column). Data includes all base editors (FNLS, F2X and FNLS-NG) and is filtered for sgRNAs that 
show more than 5% C > T editing in the sensor assay. Boxplots show the median and interquartile range (IQR) and whiskers represent 1.5*IQR. Outliers 
are shown as individual points. ns indicate p > 0.05; p values were determined with two-sided Wilcoxon signed rank test. Complete list of all comparisons 
is available in Supplementary Table 10g. (c) Schematic of (C > G) reporter developed by modifying the GO (C > T) reporter.
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Extended Data Fig. 8 | In vivo validation of cancer-associated TP53 missense mutations using BE. (a) Survival analysis of mice transplanted with 
F2X-expressing PDECs transduced with specific Trp53-targeting base editing sgRNAs. N = 5 mice per sgRNA per mutation. (b) Frequency of target C > T 
editing in tumors from transplanted mice. Each individual point represents a single isolated tumor (n = 3+ per sgRNA) Target C > T editing was measured 
by next generation sequencing of amplified target loci and data was analyzed using CRISPResso2. Data are presented as + /- SD. (c) In vivo validation of 
M237I and C135Y mutations via orthotopic transplantation of FNLS-expressing PDECs transduced with sgRNAs designed to introduce the corresponding 
mutations in the mouse Trp53 gene (M234I and C132Y, respectively). N = 5 mice per mutation. (d) Representative macroscopic (left) and microscopic 
(right; H&E) images of pancreatic tumors isolated from mice transplanted with FNLS-expressing PDEC cells transduced with specific Trp53-targeting base 
editing sgRNAs. (e) Representative Sanger sequencing traces from tumors in (d). Red arrows denote target cytosines that, when mutated to thymine, give 
rise to the corresponding amino acid changes in the p53 protein. Nucleotide triplets on the right denote the precise mutational events that give rise to 
mutant p53 proteins. * p ≤ 0.05, ** p ≤ 0.01. P-values were calculated using the log-rank test.
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Extended Data Fig. 9 | Classification of screen hits by OncoKB. (a) sgRNAs from the MBES proliferation screen were binned by categories: i) all sgRNAs; 
ii) sgRNAs depleted by <1.5 LFC and exhibiting 20% editing at the sensor; iii) sgRNAs enriched by >1.5 LFC; or iv) sgRNAs enriched >1.5 LFC and 
exhibiting 20% editing at the sensor followed by calculation of the percentage of each OncoKB classification. P-values indicate two-sided Fisher’s exact 
test comparison of the frequency of known or likely oncogenic mutations in each subset. (b) Bubble plot comparing sgRNA log fold changes with mean 
frequency of C > T editing in the sensor target site between days 5 and 30 post-transduction. Bubbles were colored by their OncoKB classification. Size 
denotes MaGeCK score (see Supplementary Table 6d).
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Extended Data Fig. 10 | Expanded base editing predictions. (a) We used the MSK-IMPACT clinical tumor sequencing dataset and the characteristics 
of commonly used base editors to inform the design of base editing sensor libraries used in the experiments in Figs. 3–6. These results are available in 
the Shiny web portal (https://dowlab.shinyapps.io/BEscan/). Using updated and expanded versions of MSK-IMPACT sequencing data, base editing 
configurations, and AMINEsearch v2, we generated an exploratory set of sgRNA and sensor predictions, which are also available in the Shiny web portal. 
The more recent version of MSK-IMPACT contains increased numbers of (b) tumors sequenced, (c) total SNVs observed, and (d) candidate unique 
recurrent SNVs. These factors in the input led to to an increase in the exploratory set (v2) compared to the HBES and MBES libraries (v1) in respect to (e) 
Cas variants (determining PAM recognition) and base editor variants (determining editing window), collectively making base editor configurations with 
distinct properties (f). These factors in the input led to to an increase in the exploratory set (v2) compared to the HBES and MBES libraries (v1) in respect 
to (g) number of sgRNAs designed and (h) unique SNVs targeted by one or more sgRNAs in the database.
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